基于SVM-KNN算法的情绪脑电识别
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.15888/j.cnki.csa.008332

基于SVM-KNN算法的情绪脑电识别

引用
情绪识别与日常生活的诸多领域都有很大联系.然而,通过单一算法难以获得较高的情绪识别准确率,为此,提出一种基于支持向量机(support vector machine,SVM)和K近邻(K-nearest neighbors,KNN)融合算法(SVM-KNN)的情绪脑电识别模型.在情绪分类时,首先计算待识别样本与最优分类超平面的空间距离,若两者距离大于提前设定的阈值,选用SVM分类器对情绪样本分类,否则选用KNN分类器.最后在SEED情感数据集上进行实验测试,通过对比实验,得出SVM-KNN算法提高了情绪三分类的准确率.运用该模型可有效地对情绪类型进行识别,对于医疗护理方面获取表达障碍患者的情绪状态有积极意义.

情绪识别;脑电信号;支持向量机;K近邻;融合算法

31

山东省科技厅重大创新工程;全国大学生创新训练项目

2022-02-25(万方平台首次上网日期,不代表论文的发表时间)

共7页

298-304

相关文献
评论
暂无封面信息
查看本期封面目录

计算机系统应用

1003-3254

11-2854/TP

31

2022,31(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn