基于SVM-KNN算法的情绪脑电识别
情绪识别与日常生活的诸多领域都有很大联系.然而,通过单一算法难以获得较高的情绪识别准确率,为此,提出一种基于支持向量机(support vector machine,SVM)和K近邻(K-nearest neighbors,KNN)融合算法(SVM-KNN)的情绪脑电识别模型.在情绪分类时,首先计算待识别样本与最优分类超平面的空间距离,若两者距离大于提前设定的阈值,选用SVM分类器对情绪样本分类,否则选用KNN分类器.最后在SEED情感数据集上进行实验测试,通过对比实验,得出SVM-KNN算法提高了情绪三分类的准确率.运用该模型可有效地对情绪类型进行识别,对于医疗护理方面获取表达障碍患者的情绪状态有积极意义.
情绪识别;脑电信号;支持向量机;K近邻;融合算法
31
山东省科技厅重大创新工程;全国大学生创新训练项目
2022-02-25(万方平台首次上网日期,不代表论文的发表时间)
共7页
298-304