基于改进DenseNet网络的书法字体识别算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.15888/j.cnki.csa.008326

基于改进DenseNet网络的书法字体识别算法

引用
汉字书法是中华传统文化的代表,但是,由于书法字体具有风格迥异、结构复杂、变形繁多等特点,给大众学习和欣赏书法带来了极大障碍.为了解决普通老百姓解读书法作品的困难,提出一种基于改进DenseNet网络的书法字体识别算法,设计区域权值比例池化规则替换传统DenseNet网络的最大池化和平均池化规则,采用Nadam算法优化模型训练效果,进行自适应学习率调整,此外,提出基于剪枝技术的模型裁剪策略,在保证识别性能的同时,提高了模型的训练效率.实验结果表明,在由楷书、行书、隶书和篆书4类字体组成的混合字体数据集中,本文算法获得了96.13%的识别率,优于另外5种深度学习模型.

深度学习;DenseNet;书法字体识别;池化规则;模型裁剪

31

广州市科技计划202007030005

2022-02-25(万方平台首次上网日期,不代表论文的发表时间)

共7页

253-259

相关文献
评论
暂无封面信息
查看本期封面目录

计算机系统应用

1003-3254

11-2854/TP

31

2022,31(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn