基于深度学习的车牌超分辨率重建
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.15888/j.cnki.csa.008306

基于深度学习的车牌超分辨率重建

引用
车牌图像重建是实现智能交通的重要步骤.在经过不断的重复实验后,本文提出了一种新的基于生成对抗网络(GAN)的超分辨率车牌图像重建模型.所提出的办法主要包括4个部分:(1)预处理输入图像,包括调整图片大小和筛选对比度差的图片;(2)引入了残差密集网络,能够充分提取车牌图像特征;(3)引入渐进式采样进行图片重建,因其具有较大的感受野,能提供更多的信息细节;(4)引入基于PatchGAN的鉴别器模型,该模型能更加精准地判断,从而引导生成器进行更高质量、更多细节的图像重建.通过在CCPD数据集上与目前较优的算法进行比较,证明本文的模型重建的车牌图像具有较高的PSNR和SSIM,分别达到了26.80和0.77,而且重建单帧图像的花费时间更少,仅为0.06 s,进而证明了我们算法的可行性.

超分辨率图像重建;生成对抗网络(GAN);残差密集网络;渐进式上采样

31

广州市科技计划项目;广东省自然科学基金面上项目;国家自然科学基金

2022-02-25(万方平台首次上网日期,不代表论文的发表时间)

共7页

234-240

相关文献
评论
暂无封面信息
查看本期封面目录

计算机系统应用

1003-3254

11-2854/TP

31

2022,31(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn