基于深度学习的车牌超分辨率重建
车牌图像重建是实现智能交通的重要步骤.在经过不断的重复实验后,本文提出了一种新的基于生成对抗网络(GAN)的超分辨率车牌图像重建模型.所提出的办法主要包括4个部分:(1)预处理输入图像,包括调整图片大小和筛选对比度差的图片;(2)引入了残差密集网络,能够充分提取车牌图像特征;(3)引入渐进式采样进行图片重建,因其具有较大的感受野,能提供更多的信息细节;(4)引入基于PatchGAN的鉴别器模型,该模型能更加精准地判断,从而引导生成器进行更高质量、更多细节的图像重建.通过在CCPD数据集上与目前较优的算法进行比较,证明本文的模型重建的车牌图像具有较高的PSNR和SSIM,分别达到了26.80和0.77,而且重建单帧图像的花费时间更少,仅为0.06 s,进而证明了我们算法的可行性.
超分辨率图像重建;生成对抗网络(GAN);残差密集网络;渐进式上采样
31
广州市科技计划项目;广东省自然科学基金面上项目;国家自然科学基金
2022-02-25(万方平台首次上网日期,不代表论文的发表时间)
共7页
234-240