基于联邦学习和改进ResNet的肺炎辅助诊断
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.15888/j.cnki.csa.008353

基于联邦学习和改进ResNet的肺炎辅助诊断

引用
针对目前基于批量归一化的ResNet肺炎辅助诊断方法对于批量大小具有较高依赖性、网络通道特征利用率较低,并针对采用深度神经网络的肺炎诊断方法都忽略了医疗数据隐私和孤岛的问题,提出一种融合联邦学习框架、压缩激励网络和改进ResNet的辅助诊断方法(FL-SE-ResNet-GN),运用联邦学习保护数据隐私的同时结合压缩激励网络和组归一化方式充分关注通道特征.通过Chest X-Ray Images数据集的实验结果表明,该方法的准确率、精度和召回率分别达到0.952、0.933和0.974.与其它现有方法相比,该方法在保护数据隐私的基础上准确率和召回率指标具有明显提升.

肺炎辅助诊断;联邦学习;残差网络;隐私保护;数据孤岛

31

2022-02-25(万方平台首次上网日期,不代表论文的发表时间)

共7页

227-233

相关文献
评论
暂无封面信息
查看本期封面目录

计算机系统应用

1003-3254

11-2854/TP

31

2022,31(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn