基于遗传理论的改进数据过采样方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.15888/j.cnki.csa.008297

基于遗传理论的改进数据过采样方法

引用
针对数据分类预测模型的生成中,高度不平衡的训练数据会大幅降低模型的性能,本文提出了一种改进的基于遗传思想的不平衡数据集过采样方法,该方法从生物染色体遗传理论中得到启发,利用近亲生成相似而又不完全相同的新实例来平衡多数类,在保证样本分布不变的前提下,减弱甚至消除不平衡数据对训练结果的偏差影响.最后,通过在公共数据集上的对比实验表明,该方法取得了更高的召回率及G-mean值,证明此改进方法行之有效,所生成模型的综合性能有所提高.

过采样;不平衡数据处理;分类预测模型;遗传理论

31

2022-02-25(万方平台首次上网日期,不代表论文的发表时间)

共6页

185-190

相关文献
评论
暂无封面信息
查看本期封面目录

计算机系统应用

1003-3254

11-2854/TP

31

2022,31(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn