基于遗传理论的改进数据过采样方法
针对数据分类预测模型的生成中,高度不平衡的训练数据会大幅降低模型的性能,本文提出了一种改进的基于遗传思想的不平衡数据集过采样方法,该方法从生物染色体遗传理论中得到启发,利用近亲生成相似而又不完全相同的新实例来平衡多数类,在保证样本分布不变的前提下,减弱甚至消除不平衡数据对训练结果的偏差影响.最后,通过在公共数据集上的对比实验表明,该方法取得了更高的召回率及G-mean值,证明此改进方法行之有效,所生成模型的综合性能有所提高.
过采样;不平衡数据处理;分类预测模型;遗传理论
31
2022-02-25(万方平台首次上网日期,不代表论文的发表时间)
共6页
185-190