基于深度学习的计算机显示器电磁信息泄漏识别
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.15888/j.cnki.csa.008035

基于深度学习的计算机显示器电磁信息泄漏识别

引用
本文以计算机显示设备泄漏电磁信号为研究对象,对于人工提取特征识别电磁泄漏信号存在的主观性强、特征冗余的问题,区别于传统基于经验的人工特征提取模式,利用人工智能深度学习方法,使用处理图像的深度学习技术应用于电磁信息泄漏特征识别,提出了一种基于卷积神经网络的识别方法.该方法首先提取电磁泄漏信号的时频谱信息作为卷积神经网络模型的输入,然后利用模型的自学习能力提取深层特征,实现对不同分辨率来源电磁泄漏信号的识别,识别准确率达到98%,单信号检测时间仅需40 ms,验证了卷积神经网络应用于电磁泄漏信号识别的有效性,为电磁泄漏预警与防护提供了重要依据,为电磁泄漏视频信号还原复现提供有力支撑.

电磁泄漏;特征提取;卷积神经网络;电磁防护;电磁信号识别

30

山西科技厅重点研发计划201903D111002

2021-08-26(万方平台首次上网日期,不代表论文的发表时间)

共7页

150-156

相关文献
评论
暂无封面信息
查看本期封面目录

计算机系统应用

1003-3254

11-2854/TP

30

2021,30(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn