基于改进蚁群算法的全向移动机器人全遍历路径规划
受全遍历环境影响, 现有方法规划得出的路径长度过长, 为提高路径规划性能, 获取最优路径, 提出基于改进蚁群算法的全向移动机器人全遍历路径规划方法. 在拓扑建模示意图的基础上, 依据移动机器人在原坐标系下的位置信息, 利用角度转换建立新的环境模型. 考虑蚁群算法存在的问题, 将递减系数引入到启发函数中, 更新局部信息素, 通过设定迭代阈值, 调节信息素的挥发系数. 最后通过路径规划流程设计, 实现对全向移动机器人全遍历路径的规划. 实验结果表明, 所设计方法不仅可以缩短全遍历路径长度, 还可以缩短路径规划时间, 获取最优路径, 从而提高了全向移动机器人的全遍历路径规划性能.
改进蚁群算法、全向移动机器人、全遍历路径、环境模型、局部信息素
30
TP301.6;TP242;TN925.93
2021-06-28(万方平台首次上网日期,不代表论文的发表时间)
共6页
209-214