基于CNN和SVM的疲劳驾驶闭眼特征实时检测
针对现有疲劳驾驶检测方法中实时性和泛化能力不足的问题, 本文提出了一种基于卷积神经网络(Convolutional Neural Networks, CNN)和支持向量机(Support Vector Machine, SVM)的疲劳驾驶闭眼特征检测方法, 使用CNN获取人脸相关特征点的位置并定位眼部感兴趣区域(Region Of Interest, ROI), 通过灰度化和直方图均衡化操作减弱光照差异的影响, 提取ROI的方向梯度直方图(Histogram of Oriented Gradient, HOG), 并用SVM对HOG进行分类, 相应的判断出原始图像是否包含疲劳驾驶闭眼特征. 本文给出了所提方法在PC平台和ARM平台实现的实时性验证, 在不同光照和背景条件下对多位受测人员进行测试, 实验结果表明该方法对疲劳驾驶闭眼特征检测准确率在94%以上, 处理速度满足实时性要求, 且具有较强的泛化能力.
疲劳驾驶、闭眼检测、级联卷积神经网络、直方图均衡化、支持向量机
30
TP391.41;TP274;TN911.73
2021-06-28(万方平台首次上网日期,不代表论文的发表时间)
共9页
118-126