基于CNN和SVM的疲劳驾驶闭眼特征实时检测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.15888/j.cnki.csa.007968

基于CNN和SVM的疲劳驾驶闭眼特征实时检测

引用
针对现有疲劳驾驶检测方法中实时性和泛化能力不足的问题, 本文提出了一种基于卷积神经网络(Convolutional Neural Networks, CNN)和支持向量机(Support Vector Machine, SVM)的疲劳驾驶闭眼特征检测方法, 使用CNN获取人脸相关特征点的位置并定位眼部感兴趣区域(Region Of Interest, ROI), 通过灰度化和直方图均衡化操作减弱光照差异的影响, 提取ROI的方向梯度直方图(Histogram of Oriented Gradient, HOG), 并用SVM对HOG进行分类, 相应的判断出原始图像是否包含疲劳驾驶闭眼特征. 本文给出了所提方法在PC平台和ARM平台实现的实时性验证, 在不同光照和背景条件下对多位受测人员进行测试, 实验结果表明该方法对疲劳驾驶闭眼特征检测准确率在94%以上, 处理速度满足实时性要求, 且具有较强的泛化能力.

疲劳驾驶、闭眼检测、级联卷积神经网络、直方图均衡化、支持向量机

30

TP391.41;TP274;TN911.73

2021-06-28(万方平台首次上网日期,不代表论文的发表时间)

共9页

118-126

相关文献
评论
暂无封面信息
查看本期封面目录

计算机系统应用

1003-3254

11-2854/TP

30

2021,30(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn