基于分割的任意形状场景文本检测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.15888/j.cnki.csa.007707

基于分割的任意形状场景文本检测

引用
随着深度学习技术的发展,自然场景文本检测的性能获得了显著的提升.但目前仍然存在两个主要的挑战:一是速度和准确度之间的权衡,二是对任意形状的文本实例的检测.本文采用基于分割的方法高效准确的检测任意形状场景文本.具体来说,使用具有低计算成本的分割头和简洁高效的后处理,分割头由特征金字塔增强模块和特征融合模块组成,前者可以引入多层次的信息来指导更好的分割,后者可以将前者给出的不同深度的特征集合成最终的特征进行分割.本文采用可微二值化模块,自适应地设置二值化阈值,将分割方法产生的概率图转换为文本区域,从而提高文本检测的性能.在标准数据集ICDAR2015和Total-Text上,本文提出的方法使用轻量级主干网络如ResNet18在速度和准确度方面都达到了可比较的结果.

自然场景文本检测、分割、特征金字塔增强模块、特征融合模块、可微二值化模块

29

2020-12-18(万方平台首次上网日期,不代表论文的发表时间)

共6页

257-262

相关文献
评论
暂无封面信息
查看本期封面目录

计算机系统应用

1003-3254

11-2854/TP

29

2020,29(12)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn