基于小波分解的LSTM水质预测模型
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.15888/j.cnki.csa.007695

基于小波分解的LSTM水质预测模型

引用
水是人类和其它生命体所依赖的不可缺少的资源,建立水质预测模型预测水质状况具有重要的社会经济和生态环保价值.本文建立了基于小波分解的长短期记忆网络(LSTM)时间序列预测模型(W-LSTM),运用Daubechies5(db5)小波将水质数据分解为高频率和低频率信号,再将这些信号作为LSTM模型的输入,来训练模型预测水质数据.利用安徽阜南王家坝流域采集到的4项水质指标(pH值、DO、CODMn、NH3N)对该模型进行训练、验证和测试,并与传统LSTM神经网络模型的训练和预测结果进行比较.结果显示所提出的方法在多种评价指标上均优于传统LSTM模型,表明了该方法具有较高的预测精度和泛化能力,是一种更有效的模拟预测手段.

水质预测、小波分解、LSTM神经网络、王家坝流域

29

烟台市科技计划2018YT06130844,2019YT06130885

2020-12-18(万方平台首次上网日期,不代表论文的发表时间)

共9页

55-63

相关文献
评论
暂无封面信息
查看本期封面目录

计算机系统应用

1003-3254

11-2854/TP

29

2020,29(12)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn