基于微局部特征的时序数据二分类算法
在诸多时序数据分类算法中,有一类算法借助时序数据的局部特征对时序数据进行分类,它们取得了不错的分类结果,然而其时间复杂度以及分类精度依旧存在可见的提升空间.本文提出的微局部特征二分类算法,着眼于局部特征本身的性质,对局部特征集进行限制,进而改进现有的基于局部特征的分类算法.新算法通过理论分析支撑,将经典算法的局部特征集大幅缩小,进而显著提升了分类算法的时间性能.另一方面通过重定义局部特征的评价标准,新算法选出性质更为优良的局部特征,提升了分类精度.
时序数据分类、特征选择、有监督学习、机器学习、人工智能
28
2019-11-26(万方平台首次上网日期,不代表论文的发表时间)
共9页
138-146