基于Spark并行化改进混合地点推荐
推荐算法是数据挖掘中最重要的算法之一.地点推荐是推荐系统的重要研究内容.针对目前地点推荐面临的数据稀疏、冷启动、个性化程度低等问题,设计并实现了基于Spark并行化处理的改进混合地点推荐模型.该算法融合了基于内容的推荐和基于协同过滤的推荐,结合了用户当前的偏好和其他用户的意见.使用基于用户-地点属性偏好的矩阵填充方式,以此改善数据稀疏性问题;同时,对于海量数据,系统采用Spark分布式集群实现并行计算,缩短了模型训练时间.实验结果表明,与其他推荐算法相比,该算法能有效改善数据稀疏性、提升推荐效果.
地点推荐、混合模型、数据填充、协同过滤、Spark
28
2019-10-30(万方平台首次上网日期,不代表论文的发表时间)
共6页
86-91