基于LSTM网络的大雾临近预报模型及应用
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.15888/j.cnki.csa.006889

基于LSTM网络的大雾临近预报模型及应用

引用
长短期记忆网络(LSTM)是一种时间递归神经网络,适合于预测时间序列延续性相对较长的事件.本文基于LSTM网络构建了一个全新的大雾临近预报框架,首先将地面气象要素观测资料转化成时间序列数据,并基于此序列进行建模.为了验证提出的模型的准确性,将安徽省81个国家站近2年地面气象要素数据转换为序列数据,基于该数据集对未来1–4小时进行逐小时大雾预报实验,实验结果显示本文提出的模型其TS-Score分别为61%、55%、36% 和31%,明显优于卷积神经网络(CNN)以及传统机器学习算法如支持向量机(SVM)和K-近邻算法(KNN)的预测结果,是大雾临近预报的一种有效预报方法.

LSTM、气象要素时间序列、大雾、临近预报

28

江苏省气象科学研究所北极阁基金BJG201707

2019-06-03(万方平台首次上网日期,不代表论文的发表时间)

共5页

215-219

相关文献
评论
暂无封面信息
查看本期封面目录

计算机系统应用

1003-3254

11-2854/TP

28

2019,28(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn