基于LSTM的POI个性化推荐框架
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.15888/j.cnki.csa.006530

基于LSTM的POI个性化推荐框架

引用
近年来,随着基于位置的社会网络(Location-Based Social Network,LBSN)热度的不断增加,为用户推荐下一个POI (Point-Of-Interests)也显得越来越重要.而对应的各种应用搜集到的用户的行为时间、地理、好友以及标签等信息的增多,使得POI推荐变得更加容易.目前针对POI推荐,已经有部分算法提出,但是他们受限于自身的局限性,还都不能很好的解决这个问题,例如,个性化马尔科夫链(Factorizing Personalized Markov Chain,FPMC)、张量分解(Tensor Factorization,TF)、RNN (Recurrent Neural Networks)等.但是,这些模型由于其本身缺陷,都不能完美的糅合POI场景中的所有信息.在这篇文章中,我们扩展了长短时记忆循环神经网络(Long-ShorT Memoryrecurrent neural networks,LSTM),提出一种全新的推荐框架POI-LSTM来解决POI推荐问题.POI-LSTM借鉴Embedding的思想,对用户信息、好友关系、POI信息和评论信息进行向量化后,输入到神经网络中,同时利用LSTM捕捉用户的兴趣特征和兴趣的变化趋势,最终能够在不同的输入层拟合社交网络信息和语义信息,同时利用用户历史行为的时间和地理位置信息来为用户推荐下一个兴趣点.

推荐系统、LSTM、POI Embedding、POI推荐、LSBN

27

2019-03-18(万方平台首次上网日期,不代表论文的发表时间)

共6页

56-61

相关文献
评论
暂无封面信息
查看本期封面目录

计算机系统应用

1003-3254

11-2854/TP

27

2018,27(12)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn