基于Hadoop的车辆调度算法优化及应用
随着互联网技术的快速发展,各行各业所产生的信息数据也在以指数级的速度增长.传统的车辆调度算法已经不能够很好地解决车辆调度问题中出现的实时性,大规模等问题.因此,本文构建了一种基于Hadoop的动态车辆调度并行智能优化算法.该算法以传统遗传算法为基础,通过改善遗传算法全局优化能力弱和收敛于局部次优解的问题,并利用Hadoop平台的并行计算机制对传统遗传算法进行改进,使其能够有效应对大规模、快速响应的车辆调度.数值计算结果表明:基于Hadoop的车辆调度算法能够有效提升传统调度算法的优化性能,在处理大规模车辆调度问题时具有良好的加速比.
智能调度、Hadoop、车辆调度算法、算法优化、启发式算法
27
2018-11-02(万方平台首次上网日期,不代表论文的发表时间)
共5页
268-272