基于递归神经网络的散文诗自动生成方法
针对中文散文诗歌的自动生成,提出一种基于循环神经网络的时序性文本生成方法.通过现有语料库构建好一个词语集后,首先给定若干关键词,在聚类模型生成的词语集基础上进行关键词扩展生成首句.在确定首句的基础上,利用上下文模型对已生成内容进行压缩和上文特征获取,最后将之前上下文内容传递给递归神经网络模型实现后续句子的生成.该方法中首句生成的过程利用语言模型中的词汇集扩展,并通过上下文模型获取关联实现上下句的映射关系.本文采用BLEU自动评测方式和人工评测方式,建立起较为标准的评测系统,实验结果证实了该方法的有效性.
深度学习、递归神经网络、卷积神经网路
27
浙江省自然科学基金LY17D060005
2018-12-05(万方平台首次上网日期,不代表论文的发表时间)
共6页
259-264