基于遗传神经网络的颜色恒常感知计算模型
在机器视觉领域,颜色恒常性是实现计算机视觉颜色校正和保持机器对颜色识别稳定性的重要因素.该模型通过心理物理实验获得由人眼感知得到的颜色恒常感知数据,将其放入神经网络中进行样本训练,并用遗传算法优化BP神经网络的连接权值和阈值.将所建立颜色恒常感知计算模型应用到图像颜色校正,通过主观和客观两个方面对校正结果进行对比评价,结果表示所建立的颜色恒常感知计算模型计算精度和效率高、复杂度低,比几种经典算法处理误差要小,针对图像的颜色再现有着更为符合人眼感知的特性.
颜色恒常性、心理物理实验、BP神经网络、遗传算法
27
国家自然科学基金61505149
2018-12-05(万方平台首次上网日期,不代表论文的发表时间)
共9页
1-9