应用自然邻居分类算法的大学生就业预测模型
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.15888/j.cnki.csa.005906

应用自然邻居分类算法的大学生就业预测模型

引用
针对因大学生对薪酬预期过高而导致就业难的问题,利用基于自然邻居的分类算法对近三年信息类专业毕业生的就业数据进行分析,建立了大学生就业薪酬预测模型.首先采用因子分析方法提取出决定大学生就业薪酬级别的潜在因子并作为模型输入变量,进而应用基于自然邻居的分类算法对就业薪酬进行分类预测.其中,自然邻分类算法成功避免了KNN算法中存在的K值选取难题,且每个节点的邻居数目会根据数据集的分布状况自适应获取.实验结果表明,该模型的预测精度高达80.16%,对于帮助大学生建立合理就业预期、提高就业能力等方面具有一定指导意义.

数据挖掘、自然邻居、分类、因子分析、就业预测

26

G64;G81

2017-09-18(万方平台首次上网日期,不代表论文的发表时间)

共5页

190-194

相关文献
评论
暂无封面信息
查看本期封面目录

计算机系统应用

1003-3254

11-2854/TP

26

2017,26(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn