基于SVM的不良文本信息识别
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

基于SVM的不良文本信息识别

引用
不良文本识别的实际应用中,大多数文本之间总有交界甚至彼此掺杂,这种非线性不可分问题给不良文本识别带来了难度。应用 SVM 通过非线性变换可以使原空间转化为某个高维空间中的线性问题,而选择合适的核函数是 SVM 的关键。由于单核无法兼顾对独立的不良词汇和词汇组合的识别,使识别准确率不高,而且也无法兼顾召回率。针对不良文本识别的特定应用,依据 Mercer 定理结合线性核与多项式核提出了一种新的组合核函数,这种组合核函数能兼顾线性核与多项式核的优势,能够实现对独立的不良词汇以及词汇组合进行识别。在仿真实验中评估了线性核、齐次多项式核以及组合核函数,实验结果表明组合核函数的识别准确率与召回率都比较理想。

SVM、组合核函数、不良文本、信息识别、召回率

2015-06-30(万方平台首次上网日期,不代表论文的发表时间)

共5页

183-187

相关文献
评论
暂无封面信息
查看本期封面目录

计算机系统应用

1003-3254

11-2854/TP

2015,(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn