基于组合特征的Bp神经网络数字识别方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1003-3254.2013.03.026

基于组合特征的Bp神经网络数字识别方法

引用
提出一种组合特征作为 Bp 神经网络输入层向量实现数字字符识别算法.该算法首先引入了数字字符结构特征中图段特征,并结合数字字符的行列统计特征组合成为新的特征向量;然后根据新的组合特征向量设计Bp 神经网络分类器;最后对已有的数字图像样本空间中的训练样本库按照 Bp 神经网络分类器训练方法进行训练,并对测试样本库中的样本进行识别.根据测试实验,数字字符的识别准确率可达到94%以上.

组合特征、Bp神经网络、分类器、数字识别、图段

2013-04-18(万方平台首次上网日期,不代表论文的发表时间)

共4页

113-116

相关文献
评论
相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn