基于优化的RBF神经网络的变量筛选方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3969/j.issn.1003-3254.2012.03.047

基于优化的RBF神经网络的变量筛选方法

引用
由于RBF神经网络结构简单、输出与初始权值无关、自适应、可调参数少等特点,提出了利用交叉验证法寻最优参数SPREAD值,构建最优RBF神经网络模型并结合MIV算法用于变量筛选.通过实例检验了模型的有效性,也使该方法具有较好的稳定性和应用性.

RBF神经网络、参数优化、交叉验证法、MIV、变量筛选

21

TP3;TM7

巢湖学院自然科学研究资助项目XLY-201101

2012-05-14(万方平台首次上网日期,不代表论文的发表时间)

共3页

206-208

相关文献
评论
暂无封面信息
查看本期封面目录

计算机系统应用

1003-3254

11-2854/TP

21

2012,21(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn