时态知识图谱的推理研究综述
随着社交网络、物端感知等技术快速发展,网络空间中涌现了大量的交互、话题、事件、新闻等数据,蕴含大量动态演化、强时效性的知识.较于忽略知识中时间信息的传统知识图谱,时态知识图谱通过建模知识的时效性以描述动态变化的现实世界,为时间紧耦合的应用提供有效支持.然而,时态知识图谱无法确保涵盖全量知识,知识的缺失严重影响应用性能,需要推理模型自动挖掘新的知识,以解释事物的历史状态,预测未来发展趋势并描述演化规律.由于实际应用的迫切需要,近年来,时态知识图谱的推理研究工作层出不穷,逐渐引起学术界和工业界的广泛关注.本文对近年来时态知识图谱的推理工作进行全面介绍和总结.首先,介绍了时态知识图谱的推理相关概念与问题描述;其次,介绍了面向补全任务的推理模型与面向预测任务的推理模型,对其进行比较分析;之后总结了时态知识图谱推理的数据集、推理任务、相关指标以及应用场景;最后展望时态知识图谱推理的未来研究趋势.综上,本文致力于为时态知识图谱的推理领域研究人员提供具有价值的参考,以推动该领域进一步发展.
时态知识图谱、时态知识推理、知识补全、知识预测、知识图谱
46
TP391(计算技术、计算机技术)
中原英才计划-中原科技创新领军人才项目;河南省重大公益专项
2023-06-12(万方平台首次上网日期,不代表论文的发表时间)
共30页
1272-1301