用异质迁移学习构建跨被试脑电情感模型
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11897/SP.J.1016.2020.00177

用异质迁移学习构建跨被试脑电情感模型

引用
由于脑电信号的个体差异性和非平稳特性对情感模型性能产生影响,如何构建跨被试脑电情感模型是情感脑-机接口领域的一个重要研究方向.本文提出一种新的从眼睛的扫视轨迹进行知识迁移的异质迁移学习方法,以提升跨被试脑电情感模型的性能.该方法的主要神经生理学依据是,被试的视觉注视诱发了大脑特定的神经活动,而这些神经活动产生的脑电信号可以为情绪识别提供重要的情境线索.为了量化不同被试之间的域差异,我们引入了基于扫视轨迹和基于脑电信号的核矩阵,并提出了改进的直推式参数迁移学习算法,以实现跨被试脑电情感模型的构建.该方法与传统方法相比,具有两个优点:一是利用了目标被试容易获取的眼动追踪数据进行被试迁移;二是在目标被试只有眼动追踪数据的情况下,仍然能够从其他被试的历史数据中学到脑电信号的情绪类别判别信息.为了验证所提方法的有效性,我们对本文提出的方法与已有的迁移方法在三类情绪识别的脑电和眼动数据集上进行了系统的对比实验研究.实验结果表明,基于眼动轨迹的迁移模型取得了与基于脑电信号的迁移模型相当的识别性能.相对于传统的通用分类器50.46%的平均准确率,基于眼动轨迹的迁移模型的平均准确率达到了69.72%.

情感脑机接口、多模态情绪识别、跨被试情感模型、迁移学习、脑电信号、眼动信号、扫视轨迹

43

TP18(自动化基础理论)

本课题得到国家重点研发计划;国家自然科学基金项目

2020-05-07(万方平台首次上网日期,不代表论文的发表时间)

共13页

177-189

相关文献
评论
暂无封面信息
查看本期封面目录

计算机学报

0254-4164

11-1826/TP

43

2020,43(2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn