基于线程池的GPU任务并行计算模式研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11897/SP.J.1016.2018.02175

基于线程池的GPU任务并行计算模式研究

引用
GPU已经成为具有高并发高内存带宽的通用协处理器,但是GPU与CPU在体系结构和编程模型上存在很大差异,导致CPU-GPU异构计算系统的编程复杂度提高,即使采用统一计算设备架构(CUDA)提供的kernel并发技术和多流技术也较难充分控制和利用GPU上的计算资源,难以有效地处理不规则的并行应用问题.为从体系结构角度探索GPU硬件支持的页锁定内存和统一虚拟地址空间等特征,该文提出了CPU辅助任务调度管理下的基于线程池技术的GPU任务并行计算模型CAGTP,实现了CPU-GPU异构计算系统上的共享内存式程序设计.提出并设计了CPU端的任务队列、计算线程块级任务调度器、任务槽和GPU端的任务复用kernel函数等机制,实现了CPU与GPU间的高效细粒度任务交互,避免了原生CUDA程序中多次启停kernel函数的开销,有效地支持了GPU上的细粒度不规则并行任务计算,而且利用模型API接口函数能够降低CPU-GPU异构计算系统的编程难度.实验结果表明,CAGTP模型中任务调度的开销是kernel函数调用的5%,有效提升了通用矩阵乘、乔列斯基分解和K均值、T近邻等典型线性代数和机器学习算法的计算性能;CAGTP模型易于扩展使用多块GPU,且在性能差异较大的多个GPU之间达到负载均衡,能够高效求解混合任务和具有不规则并行性的应用问题.

异构计算系统、统一计算设备架构、线程池、任务并行、任务复用函数

41

TP393(计算技术、计算机技术)

国家自然科学基金61872200;天津市自然科学基金16JCYBJC15200,17JCQNJC00300;计算机体系结构国家重点实验室开放课题CARCH201504;天津市大数据与云计算科技重大专项15ZXDSGX00020;高等学校博士学科点专项科研基金20130031120029

2018-12-12(万方平台首次上网日期,不代表论文的发表时间)

共18页

2175-2192

相关文献
评论
暂无封面信息
查看本期封面目录

计算机学报

0254-4164

11-1826/TP

41

2018,41(10)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn