一种基于元路径的异质信息网络链路预测模型
真实世界中不同类型的对象之间相互连接,形成异质信息网络.预测网络中对象之间的连接或交互是网络分析中的一个重要任务.不同于传统的同质性网络的链路预测,异质信息网络中,由于存在多种类型的节点和边,节点之间可以通过不同的关系进行连接.文中使用元路径,即通过一组关系连接了多种节点类型的路径,来描述异质信息网络中不同类型对象之间各种连接的不同语义,从而提出一种异质信息网络链路预测模型,通过组合对象之间在不同元路径上建立连接的概率来进行链路预测.在DBLP和Last.fm两个真实数据集上的实验结果表明:在7种关系的链路预测中,相比最好的基准方法,文中方法的AUC值平均提升了5.93%;另外,在链路预测中,通过元路径区分不同类型的节点和边之后,预测精度得到了明显提升;最后,为了平衡预测精度和模型的可扩展性,实验分析表明链路预测中仅考虑路径长度小于5的元路径就已经足够产生很好的预测结果.
异质信息网络、链路预测、元路径、社会计算、社交网络
TP393(计算技术、计算机技术)
国家“九七三”重点基础研究发展规划项目基金2014CB340401国家自然科学基金61035004,61273213,61305055;国防自然科学基金9140A15090112JB93180
2014-05-06(万方平台首次上网日期,不代表论文的发表时间)
共11页
848-858