一种新的语言模型判别训练方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3321/j.issn:0254-4164.2005.10.018

一种新的语言模型判别训练方法

引用
已有的一些判别训练(discriminative training)方法如Boosting”1”为了提高算法的效率,要求损失函数(loss function)是可以求导的,这样的损失函数无法体现最直接的优化目标.而根据最直接优化目标定义的损失函数通常是不可导的阶梯函数的形式.为了解决上述问题,文章提出了一种新的判别训练的方法GAP(Greedy Approximation Processing).这种方法具有很强的通用性,只要满足阶梯函数形式的损失函数都可以通过此算法进行训练.由于阶梯形式的损失函数是不可导的,无法使用梯度下降的方式计算极值并获得特征权值.因此,GAP采用”贪心”算法的方式,顺序地从特征集合中选取特征,通过穷举搜索的方式确定其权值.为了提高GAP算法的速度,作者在GAP算法中引入了特征之间独立的假设,固定特征的更新顺序,提出了GAP的改进算法FGAP(Fast Greedy Approximation Processing).为了证明FGAP算法的有效性,该文将FGAP算法训练的模型应用到日文输入法中.实验结果表明通过FGAP算法训练的语言模型优于Boosting算法训练的模型,与基础模型相比相对错误率下降了15%~19%.

语言模型、判别训练、损失函数、日文输入法

28

TP391(计算技术、计算机技术)

2005-11-24(万方平台首次上网日期,不代表论文的发表时间)

共8页

1708-1715

相关文献
评论
暂无封面信息
查看本期封面目录

计算机学报

0254-4164

11-1826/TP

28

2005,28(10)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn