10.3778/j.issn.1673-9418.2209100
无监督学习的车辆重识别方法研究综述
车辆重识别作为智能交通系统的关键技术之一,旨在从不同监控场景下识别同一车辆,对构建平安智慧城市起着重要作用.随着计算机视觉技术的不断发展,使用监督学习的重识别方法存在训练过程对人工标注依赖强、场景泛化能力弱的问题,因此无监督学习的车辆重识别逐渐成为近年来研究的重点.首先,介绍了当前主流的车辆重识别数据集以及常用的模型评价指标.然后,系统梳理了近几年基于无监督学习的车辆重识别方法,根据目前的研究思路将这些方法归纳为生成对抗网络和聚类算法两大类;从域偏差、跨视域偏差以及数据样本信息不足的问题出发,将前者进一步分为风格转换、多视角生成和数据增强三类;又针对标签的问题,将后者分为伪标签的无监督域适应和无需标签信息两类;以解决问题为着手点,总结出每类方法的基本原理、优缺点以及在主流数据集上的性能结果.最后,讨论分析了目前无监督学习的车辆重识别所面临的挑战,并对该研究方向的未来工作进行展望.
智能交通、车辆重识别、无监督学习、生成对抗网络、聚类
17
TP391.41(计算技术、计算机技术)
国家自然科学基金;国家自然科学基金;山东省研究生教育质量课程项目;山东省研究生教育联合培养基地项目
2023-05-11(万方平台首次上网日期,不代表论文的发表时间)
共21页
1017-1037