编码-解码技术的图像标题生成方法研究综述
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3778/j.issn.1673-9418.2112080

编码-解码技术的图像标题生成方法研究综述

引用
近年来,图像标题生成作为人工智能领域中的多模态任务,融合了计算机视觉和自然语言处理的相关研究,能够实现从图像到文本的模态转换,在视觉辅助和图像理解等方面有着重要作用,备受研究者们的广泛关注.首先对图像标题生成任务进行了阐述,介绍了三种图像标题生成方法,基于模板的方法、基于检索的方法和基于编码-解码的方法以及各自的方法思路、代表性研究和优缺点.其次从方法的模型构成、图像理解阶段和标题生成阶段的研究进展等方面对基于编码-解码的方法进行了详细阐述.将近年来的研究总结归纳为图像理解方面的研究和标题生成方面的研究,其中图像理解方面的研究包括注意力机制的研究和语义获取方面的研究,标题生成方面的研究分为传统标题、密集标题和个性化标题生成的研究,并总结了模型性能及优缺点,介绍了图像标题生成模型进行性能评估的数据集和评测指标.最后指出图像标题生成领域研究面对的挑战和难点.

图像标题生成、编码、解码、多模态、注意力机制

16

TP391(计算技术、计算机技术)

国家自然科学基金;辽宁省教育厅科学研究项目;辽宁省教育厅科学研究项目;辽宁省教育厅面上项目

2022-10-21(万方平台首次上网日期,不代表论文的发表时间)

共15页

2234-2248

相关文献
评论
暂无封面信息
查看本期封面目录

计算机科学与探索

1673-9418

11-5602/TP

16

2022,16(10)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn