10.3778/j.issn.1673-9418.2009035
融合短文本层级注意力和时间信息的推荐方法
信息过载造成的数据稀疏性问题制约着基于评分数据的矩阵分解模型的推荐性能,融合评论文本的推荐模型能够有效缓解评分数据稀疏性.当前的推荐系统利用评论文本为用户和项目建模时,大多仅将用户对项目的评论作为数据来源,而忽视了时间信息对用户和项目属性的影响.针对此问题,提出了一种融合短文本层级注意力和时间信息的推荐方法(RHATR),该方法能够充分地挖掘评论文本潜在的语义信息,并为用户偏好和项目特征的动态变化进行建模.通过对单条评论文本应用单词级注意力,挖掘单条评论文本中情感词和关键词等有效信息,学习用户和项目表示;对含有时间因素的用户评论集和项目评论集分别应用评论级注意力,提取有效的评论,进一步学习用户偏好和项目特征动态表示.将从评论文本中学到的用户和项目表示以及基于ID的项目和用户嵌入作为最终特征,来捕获各用户和项目的潜在因素.实验结果表明,提出的方法相对于当前基线方法在Amazon和Yelp数据集上的均方根误差(RMSE)取得了较好的效果.
推荐系统;评论文本;层级注意力;时间信息
15
TP181(自动化基础理论)
国家重点研发计划;辽宁省自然科学基金;辽宁省教育厅基础项目
2021-11-17(万方平台首次上网日期,不代表论文的发表时间)
共11页
2222-2232