PAC最优的RMAX-KNN探索算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3778/j.issn.1673-9418.1905023

PAC最优的RMAX-KNN探索算法

引用
探索与利用的均衡是强化学习研究的重点之一.探索帮助智能体进一步了解环境来做出更优决策;而利用帮助智能体根据其自身当前对于环境的认知来做出当前最优决策.目前大多数探索算法只与值函数相关联,不考虑当前智能体对于环境的认知程度,探索效率极低.针对此问题,提出了一种基于状态空间自适应离散化的RMAX-KNN强化学习算法,算法根据当前智能体对于环境状态空间的离散化程度改写值函数形式,然后基于此值函数对环境进行合理的探索,逐步实现对于环境状态空间的自适应离散化划分.RMAX-KNN算法通过将探索与环境状态空间离散化相结合,逐渐加深智能体对于环境的认知程度,进而提高探索效率,同时在理论上证明该算法是一种概率近似正确(PAC)最优探索算法.在Benchmark环境上的仿真实验结果表明,RMAX-KNN算法可以在探索环境的同时实现对于环境状态空间的自适应离散化,并学习到最优策略.

探索与利用的均衡、值函数、状态空间自适应离散化、概率近似正确(PAC)最优探索算法

14

TP301.6(计算技术、计算机技术)

The National Natural Science Foundation of China under Grant Nos. 61673249, U1805263 国家自然科学基金;the Key Research&Development Program of Shanxi Province International Cooperation under Grant No. 201903D421050 山西省国际科技合作重点研发计划项目

2020-03-31(万方平台首次上网日期,不代表论文的发表时间)

共14页

513-526

相关文献
评论
暂无封面信息
查看本期封面目录

计算机科学与探索

1673-9418

11-5602/TP

14

2020,14(3)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn