基于集体影响和边聚类信息的链路预测算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3778/j.issn.1673-9418.1803027

基于集体影响和边聚类信息的链路预测算法

引用
链路预测的任务是挖掘网络中缺失的链接或预测一对节点之间存在链路的可能性.如何有效准确地预测不完整复杂网络中的缺失链接是一个具有挑战性的问题.综合考虑节点的集体影响以及边的聚类信息对所预测边的贡献,提出一种新的链路预测算法CELP(link prediction algorithm based on collective influence and edge clustering information),并结合节点的社区属性,基于设计的贝叶斯网络提出其在标签网络的扩展算法CELP*.来自各个领域的多个测试网络的实验结果表明,与典型的链路预测方法及近期的部分指标相比,所提算法在保持同等AUC水平的同时,提高了预测精度,也进一步肯定了局部节点信息和链路信息对于链路预测工作的重要性.

复杂网络、链路预测、集体影响、聚类信息、贝叶斯网络、相似性算法

12

TP391(计算技术、计算机技术)

The Foundation for Production and Research Cooperation Project of Jiangsu Province under Grant No. BY2015019-30

2019-01-16(万方平台首次上网日期,不代表论文的发表时间)

共12页

1914-1925

相关文献
评论
暂无封面信息
查看本期封面目录

计算机科学与探索

1673-9418

11-5602/TP

12

2018,12(12)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn