萤火虫优化和随机森林的WSN异常数据检测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3778/j.issn.1673-9418.1801011

萤火虫优化和随机森林的WSN异常数据检测

引用
异常数据检测在无线传感器网络(wireless sensor network,WSN)环境监测系统中发挥重要作用.针对传统的随机森林(random forest,RF)算法因冗余决策树导致异常数据检测效率不高的问题,根据选择性集成思想,提出了一种基于变异二进制萤火虫算法(mutation binary glowworm swarm optimization,MBGSO)以及自适应更新随机森林的WSN异常数据检测算法MBGSO-ARF.该算法使用改进的BGSO算法优化RF进行选择性集成以得到最优子集成分类器,并使得检测模型随数据流的变化而自适应更新,提高了检测准确性并节省了检测时间,对优化算法MBGSO和二进制粒子群算法(binary particle swarm optimization,BPSO)进行了实验对比.仿真实验结果表明:该优化算法优于BPSO算法,MBGSO-ARF算法在准确率上较其余算法都有提升,且集成模型大小得到了压缩.以上结果证明了MBGSO-ARF算法的有效性.

异常检测、随机森林、无线传感器网络(WSN)、萤火虫算法、选择性集成学习

12

TP393(计算技术、计算机技术)

2018-10-29(万方平台首次上网日期,不代表论文的发表时间)

共12页

1633-1644

相关文献
评论
暂无封面信息
查看本期封面目录

计算机科学与探索

1673-9418

11-5602/TP

12

2018,12(10)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn