深度卷积神经网络的立体彩色图像质量评价
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3778/j.issn.1673-9418.1705072

深度卷积神经网络的立体彩色图像质量评价

引用
提出了一种基于深度卷积神经网络(convolution neural network,CNN)的无参考立体图像质量评价(stereoscopic image quality assessment,SIQA)算法.该模型采用彩色图像直接作为输入,由立体图像的左视图、右视图和视差图的彩色图像块组成3个通道直接输入,每个通道由12层的深度网络组成,通过卷积层与最大池的多层堆叠,学习到立体感知特性的局部自然场景统计特征.最后将3个通道学习到的特征向量线性拼接,通过全连接层回归,得到立体图像的质量得分.在LIVE 3D PhaseⅠ立体图像质量评价库上的实验结果表明,所提方法在JP2K、WN和FF失真类型上都优于文献报道的立体图像质量评价算法,具有很好的主观感知一致性.

无参考立体图像质量评价、卷积神经网络、视差图

12

TP391.4(计算技术、计算机技术)

The National Natural Science Foundation of China under Grant No. 61170120

2018-08-27(万方平台首次上网日期,不代表论文的发表时间)

共8页

1315-1322

相关文献
评论
暂无封面信息
查看本期封面目录

计算机科学与探索

1673-9418

11-5602/TP

12

2018,12(8)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn