基于人工蜂群智能技术的属性异常点检测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3778/j.issn.1673-9418.1703042

基于人工蜂群智能技术的属性异常点检测

引用
为了解决数据库属性异常点检测方法时间复杂度大并且查准率和查全率不高的问题,提出了新的基于人工蜂群优化技术(artificial bee colony,ABC)和O-measure度量(一种评估属性异常点的度量)相结合的属性异常点检测方法,模拟人工蜂群随机搜索较优的食物源能力发现属性异常点.针对群体智能算法检测属性异常点会陷入局部收敛的缺陷,提出使用模拟退火技术让人工蜂群跳出局部最优解而找到全局最优解的算法.该算法通过蜂群在二维数据平面上搜索食物源,计算所经过路径上的数据项O-measure适应度,从中寻找最优解(即属性异常点).实验结果表明,所提算法较之前的算法耗时短,且提高了检测的准确率和查全率.

属性异常点、人工蜂群算法、模拟退火、O-measure

11

TP18(自动化基础理论)

The National Natural Science Foundation of China under Grant No. U1431227;the Foundation of Guangzhou Science and Technology Planning Project under Grant No. 201604010037

2017-12-26(万方平台首次上网日期,不代表论文的发表时间)

共9页

1984-1992

相关文献
评论
暂无封面信息
查看本期封面目录

计算机科学与探索

1673-9418

11-5602/TP

11

2017,11(12)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn