基于实例迁移的跨项目软件缺陷预测
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.3778/j.issn.1673-9418.1505089

基于实例迁移的跨项目软件缺陷预测

引用
跨项目软件缺陷预测是解决项目初期缺陷预测缺乏数据集的有效途径,但是项目间的差异性降低了预测准确率.针对这一问题,研究提出了基于实例迁移的跨项目缺陷预测方法.该方法采用迁移学习和自适应增强技术,从其他项目数据集中提取并迁移转化出与目标数据集关联性高的训练数据集,训练出更有效的预测模型.使用PROMISE数据集进行了对比实验,结果表明所提出的新方法有效避免了单源单目标缺陷预测两极分化问题,获得了更高的预测准确率和查全率;在目标项目数据集不足的情况下,能达到甚至超过数据集充足时项目内缺陷预测的预测效果.

跨项目缺陷预测、迁移学习、基于实例的迁移、自适应增强

10

TP311.5(计算技术、计算机技术)

The National Natural Science Foundation of China under Grant No.61472242;the National Basic Research Program of China under Grant No.2015CB352203国家重点基础研究发展计划973计划

2016-06-07(万方平台首次上网日期,不代表论文的发表时间)

共13页

43-55

相关文献
评论
暂无封面信息
查看本期封面目录

计算机科学与探索

1673-9418

11-5602/TP

10

2016,10(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn