基于边缘智能感知的无人机空间航迹规划方法
随着海量用频设备的涌现,无人机执行任务的电磁环境愈加复杂,对无人机认知环境和自主避障能力提出了更高的要求.鉴于此,提出了一种基于边缘智能感知的无人机空间航迹规划方法.首先,提出了一个基于边缘智能感知的无人机航迹规划框架,通过边缘服务器、传感器终端和无人机的协同通信与计算,提高无人机的环境感知和自主避障能力;其次,提出了一种基于深度确定性策略梯度(Deep Deterministic Policy Gradient,DDPG)算法优化的人工势场方法,避免无人机航迹规划陷入局部最小值点,同时行能耗;最后,在静态和动态干扰环境中对所提算法进行仿真实验,结果表明,与现有航迹规划方法相比,所提方法可以优化无人机的飞行航迹和传输数据速率,在静态和动态干扰环境中,无人机飞行能耗分别降低5.59%和11.99%,传输速率分别提高7.64%和16.52%,显著提高了无人机的通信稳定性和对复杂电磁环境的适应性.
频谱地图、移动边缘计算、航迹规划、人工势场、深度强化学习
50
TN919.4
2023-09-20(万方平台首次上网日期,不代表论文的发表时间)
共7页
311-317