融合机器阅读理解的中文医学命名实体识别方法
医学命名实体识别是自动构建大规模医学知识库的关键,但医学文本中存在实体嵌套现象,采用序列标注的方法不能识别出嵌套中的实体.文中提出了基于阅读理解框架的中文医学命名实体识别方法,该方法将嵌套命名实体识别问题建模为机器阅读理解问题,使用BERT建立阅读理解问题和医学文本之间的联系,并引入多头注意力机制强化问题和嵌套实体之间的语义联系,最后用两个分类器对实体开头和结尾位置进行预测.与 目前5种主流方法相比,该方法取得了最优结果,综合F1值达到了67.65%;与经典的实体识别模型BiLSTM-CRF相比,F1值提升了7.17%,其中嵌套较多的临床表现实体提升16.81%.
命名实体识别、中文医学、嵌套实体、机器阅读理解、多头注意力机制
50
TP391.1(计算技术、计算机技术)
2023-09-20(万方平台首次上网日期,不代表论文的发表时间)
共8页
287-294