基于多层感知机和语义矩阵的答案选择模型
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11896/jsjkx.220400275

基于多层感知机和语义矩阵的答案选择模型

引用
答案选择是问答系统领域的关键子任务,其性能表现支撑着问答系统的发展.基于参数冻结的BERT模型生成的动态词向量存在句级语义特征匮乏、问答对词级交互关系缺失等问题.多层感知机具有多种优势,不仅能够实现深度特征挖掘,且计算成本较低.在动态文本向量的基础上,文中提出了一种基于多层感知机和语义矩阵的答案选择模型,多层感知机主要实现文本向量句级语义维度重建,而通过不同的计算方法生成语义矩阵能够挖掘不同的文本特征信息.多层感知机与基于线性模型生成的语义理解矩阵相结合,实现一个语义理解模块,旨在分别挖掘问题句和答案句的句级语义特征;多层感知机与基于双向注意力计算方法生成的语义交互矩阵相结合,实现一个语义交互模块,旨在构建问答对之间的词级交互关系.实验结果表明,所提模型在WikiQA数据集上MAP和MRR分别为0.789和0.806,相比基线模型,该模型在性能上有一致的提升,在SelQA数据集上MAP和MRR分别为0.903和0.911,也具有较好的性能表现.

答案选择、BERT模型、动态词向量、多层感知机、语义矩阵

50

TP391.1(计算技术、计算机技术)

江苏省双创博士项目;南京邮电大学引进人才科研启动基金项目

2023-05-12(万方平台首次上网日期,不代表论文的发表时间)

共7页

270-276

相关文献
评论
暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

50

2023,50(5)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn