一种基于Bottleneck Transformer的轻量级微表情识别架构
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11896/jsjkx.210500023

一种基于Bottleneck Transformer的轻量级微表情识别架构

引用
微表情是一种能够体现人真实情感的自发面部动作,其持续时间较短,动作幅度轻微,识别难度较大,但是有重要的研究价值.为解决微表情情感识别问题,提出了一种新型的轻量级微表情识别网络mini-AORCNN.该神经网络以顶点-起始点光流特征为输入,结合残差卷积神经网络与视觉Transformer的相关架构,可以有效完成微表情识别任务.这一网络包含一种参数量更小的新型残差模块,并用自注意力算子替换了最后一个残差块中的卷积算子,从而实现了Bottleneck Transformer架构.这一新型微表情识别网络在中科院CASME系列数据集上经过"留一被试交叉验证"(LOSO)的检验,确定其在情感分类任务上取得了73.09%的平均召回率(UAR)以及72.25%的平均F1-Score(UF1),上述准确率评价指标与极低的参数量(39185)在与微表情领域的多种主流模型的比较中体现出了明显的优势.文中还包含了一组消融实验,确保了光学应变强度、自注意力机制和相对位置编码等设计的优越性.

微表情识别、视觉Transformer、自注意力机制、残差卷积神经网络、可计算情感

49

TP301.6(计算技术、计算机技术)

德科学中心项目;上海市科技计划项目;中央高校基本科研业务费专项

2022-06-22(万方平台首次上网日期,不代表论文的发表时间)

共8页

370-377

相关文献
评论
暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

49

2022,49(z1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn