基于值分解的多智能体深度强化学习综述
基于值分解的多智能体深度强化学习是众多多智能体深度强化学习算法中的一类,也是多智能体深度强化学习领域的一个研究热点.它利用某种约束将多智能体系统的联合动作值函数分解为个体动作值函数的某种特定组合,能够有效解决多智能体系统中的环境非稳定性和动作空间指数爆炸等问题.文中首先说明了进行值函数分解的原因;其次,介绍了多智能体深度强化学习的基本理论;接着根据是否引入其他机制以及引入机制的不同将基于值分解的多智能体深度强化学习算法分为3类:简单因子分解型、基于IG M(个体-全局-最大)原则型以及基于注意力机制型;然后按分类重点介绍了几种典型算法并对算法的优缺点进行对比分析;最后简要阐述了所提算法的应用和发展前景.
值函数分解、多智能体深度强化学习、注意力机制、IG M原则
49
TP181(自动化基础理论)
2022-09-16(万方平台首次上网日期,不代表论文的发表时间)
共11页
172-182