一种基于深度学习的供热策略优化方法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11896/jsjkx.210300155

一种基于深度学习的供热策略优化方法

引用
在中国北方,冬季楼宇集中供暖采用的策略通常为气候补偿器,但是该策略严重依赖人工经验,调节相对粗放,如何优化供热控制策略对于保持楼宇室温的稳定舒适十分重要.对此,提出了一种基于深度学习的供热策略优化方法,通过学习历史真实数据信息从而对原始控制策略进行优化.首先以学习室内温度变化的热力学规律为目标,提出了一种深度多时差分网络MTDN(Multiple Time Difference Network)来对下一时刻的室温进行预测,该网络不仅准确率高,而且符合物理规律;然后将MTDN当成模拟器,以表征人体热反应的评价指标作为相关奖励项,使用基于最大熵强化学习思想的SAC(Soft Actor Critic)算法作为策略优化器与之交互训练,从而学习到一个稳定优秀的供热控制策略;最后基于天津某个换热站的真实数据,设计相关实验分别对模拟器预测能力和策略优化器策略控制能力进行评估.验证得出:相比其他类型的预测模拟器,该模拟器不仅预测精度高,并且符合物理规律;同时,相比原始策略,该策略优化器所学的策略在随机采样的多个时段内均可以保证室内温度更加稳定舒适.

集中供暖、供热优化、深度学习、深度强化学习、城市计算

49

TP399(计算技术、计算机技术)

国家重点研发计划;国家自然科学基金

2022-04-08(万方平台首次上网日期,不代表论文的发表时间)

共6页

263-268

相关文献
评论
暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

49

2022,49(4)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn