跨领域文本的可迁移情绪分析方法
随着移动互联网的迅猛发展,社交网络平台充斥着大量带有情绪色彩的文本数据,对此类文本中的情绪进行分析研究不仅有助于了解网民的态度和情感,而且对科研机构和政府掌握社会的情绪变化及走向有着重要作用.传统的情感分析主要对情感倾向进行分析,无法精确、多维度地描述出文本的情绪,为了解决这个问题,文中对文本的情绪分析进行研究.首先针对不同领域文本数据集中情绪标签缺乏的问题,提出了一个基于深度学习的可迁移情绪分类的情感分析模型FMRo-BLA,该模型对通用领域文本进行预训练,然后通过基于参数的迁移学习、特征融合和FGM对抗学习,将预训练模型应用于特定领域的下游情感分析任务中,最后在微博的公开数据集上进行对比实验.结果表明,该方法相比于目前性能最好的RoBERTa预训练语言模型,在目标领域数据集上F1值有5.93%的提升,进一步加入迁移学习后F1值有12.38%的提升.
情绪分析;深度学习;特征融合;迁移学习
49
TP391(计算技术、计算机技术)
国家重点研发课题2020AAA0105101
2022-03-22(万方平台首次上网日期,不代表论文的发表时间)
共7页
218-224