融合时间特性和用户偏好的卷积序列化推荐
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11896/jsjkx.201200192

融合时间特性和用户偏好的卷积序列化推荐

引用
推荐系统如今已被广泛应用于生活中,大大便利了人们的生活.传统的推荐方法主要是针对用户与物品的交互情况进行分析,分析用户与物品的历史记录,得到的只是用户过去对于物品的喜好程度.序列化推荐系统通过分析用户近一段时间与物品交互的序列,来考虑用户前后行为的关联性,能够获得用户短期内对物品的喜好程度.然而,序列化方法强调的是用户与物品在短期的联系,忽视了物品属性之间存在的关系.针对以上问题,文中提出了融合时间特性和用户偏好的卷积序列化推荐(Convolutional Embedding Recommendation with Time and User Preference,CERTU)模型.该模型能够分析物品之间存在的多样性关系,从而捕获用户对物品随时间变化的动态喜好程度这一特性.除此之外,该模型进一步考虑了物品序列中存在的单个物品和多个物品对下一物品推荐的影响.实验结果表明,CERTU模型的性能优于当前的基线方法.

推荐系统;卷积神经网络;序列化推荐;用户兴趣;时间特性

49

TP311(计算技术、计算机技术)

国家自然科学基金61702043

2022-01-21(万方平台首次上网日期,不代表论文的发表时间)

共6页

115-120

相关文献
评论
暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

49

2022,49(1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn