基于随机森林的入侵检测分类研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11896/jsjkx.200600161

基于随机森林的入侵检测分类研究

引用
为了有效地检测网络的攻击行为,机器学习被广泛用于对不同类型的入侵检测进行分类,传统的决策树方法通常用单个模型训练数据,容易出现泛化误差大、过拟合的问题.为解决该问题,文中引入并行式集成学习的思想,提出基于随机森林的入侵检测模型,由于随机森林中每棵决策树都有决策权,因此可以很好地提高分类的准确性.利用NSL-KDD数据集对入侵检测模型进行训练和测试,实验结果表明,该模型的准确率可达99.91%,具有非常好的入侵检测分类效果.

入侵检测、机器学习、随机森林、决策树

48

TP181(自动化基础理论)

2021-07-13(万方平台首次上网日期,不代表论文的发表时间)

共5页

459-463

相关文献
评论
暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

48

2021,48(z1)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn