基于图神经网络的软件系统中关键类的识别
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11896/jsjkx.210100200

基于图神经网络的软件系统中关键类的识别

引用
软件系统中通常存在一些在拓扑结构上处于核心位置的关键类,这些类上的缺陷往往会给系统带来极大的安全隐患,识别关键类对工程师理解或维护一个软件系统至关重要.针对这一问题,提出一种基于图神经网络的关键类识别方法.首先利用复杂网络理论,将软件系统抽象为软件网络;其次结合无监督网络节点嵌入学习以及邻域聚合的方式,构建一个编码-解码(encoder-decoder)框架,提取软件系统中类节点的表征向量;最后利用Pairwise排序学习实现网络中节点的重要性排序,从而实现软件系统中关键类的识别.为验证所提方法的有效性,选取4个Java开源软件作为实验对象,并与常用的5种节点重要性度量方法以及2个已有工作进行对比分析.实验结果表明:与介数中心性、K-core、接近中心性、节点收缩法和PageRank等方法相比,该方法识别关键类的效果更好;另外,相比已有工作,在前15%的关键类节点中,所提方法的召回率和准确率的提高幅度均在10%以上.

软件网络;关键类识别;网络嵌入;图神经网络;排序学习

48

TP311.53;TP183(计算技术、计算机技术)

2021-12-13(万方平台首次上网日期,不代表论文的发表时间)

共10页

149-158

相关文献
评论
暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

48

2021,48(12)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn