基于知识表示的联合问答模型
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

基于知识表示的联合问答模型

引用
基于知识库的问答系统旨在通过解析用户的自然语言问句直接在知识库中提取出答案.目前,大多数知识库问答模型都遵循实体检测和关系识别这两个步骤,但是此类方法忽略了知识库本身所蕴含的结构信息以及这两个步骤之间的联系.文中提出了一种基于知识表示的联合问答模型.首先应用知识表示模型将知识库中的实体与关系映射到低维的向量空间,然后通过神经网络将问句也嵌入相同的向量空间,同时检测出问句中的实体,并在此向量空间内度量知识库三元组与问句的语义相似度,从而实现将知识库嵌入和多任务学习引入知识库问答.实验结果表明,所提模型可以极大地提高训练速度,在实体检测和关系识别任务上的准确率达到了主流水平,证明了知识库嵌入及多任务学习可以提升知识库问答任务的性能.

知识库问答、知识库嵌入、多任务学习

48

TP311(计算技术、计算机技术)

国家自然科学基金;中央高校基本科研业务费专项;东华大学励志计划

2021-06-28(万方平台首次上网日期,不代表论文的发表时间)

共5页

241-245

相关文献
评论
暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

48

2021,48(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn