基于相对危险度的儿童先心病风险因素分析算法
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

基于相对危险度的儿童先心病风险因素分析算法

引用
对疾病相关风险项的分析是数据挖掘理论在医疗领域应用的一个重要内容,可以帮助医生分析疾病成因,从而有效地开展防治工作.医学领域的疾病数据有其自身的特征,例如其高度不平衡性的特点往往使得大量珍贵的信息蕴藏于支持度小的属性项中,直接采用经典的基于支持度的关联规则挖掘算法易造成重要信息的丢失.因此,文中结合医疗领域的知识,基于医学领域常用的统计标准——相对危险度,提出了一种挖掘疾病高风险项集的算法(Mining Algorithm for high Relative Risk Itemsets,MARRI),以及与之相匹配的两种规则剪枝方法,即作用叠加剪枝和样本数剪枝,并在儿童先心病数据集上对算法进行验证.实验结果表明,该算法具有挖掘低支持度项集信息的能力,挖掘出的疾病关联因素更有价值.

关联规则、相对危险度、数据挖掘、疾病分析

48

TP181(自动化基础理论)

国家自然科学基金;四川省重点研发计划项目

2021-06-28(万方平台首次上网日期,不代表论文的发表时间)

共5页

210-214

相关文献
评论
暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

48

2021,48(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn