基于全局和局部判别对抗自编码器的异常检测方法
生成式对抗神经网络(Generative Adversarial Nets,GAN)和对抗自编码器(Adversarial Autoencoder,AAE)被成功地应用于图像生成中.此外,对抗网络能够无监督地对样本中所包含的数据特征进行学习.然而,将传统的对抗网络应用于异常检测时取得的分类效果较差,有两个方面的原因:一是GAN属于生成式模型,但异常检测模型往往被归入判别式模型的范畴;二是现有的AAE以自编码器的中间向量作为判别输入,对数据的重构效果不够理想.基于此,提出了一种基于双判别器的AAE,并将其应用于解决异常检测问题.所提方法中的双判别器具有不同的判别能力,即局部判别能力和全局判别能力.在MNIST,Fashion-MNIST和CIFAR-10数据集上的实验结果表明,所提方法能够有效避免训练过程中出现模式崩溃的问题.此外,与相关方法进行对比,所提方法取得了更优的检测性能.
异常检测、生成式对抗网络、对抗自编码器、模式崩溃
48
TP391.4(计算技术、计算机技术)
国家自然科学基金;河北省自然科学基金
2021-06-28(万方平台首次上网日期,不代表论文的发表时间)
共8页
202-209