基于二阶近邻的核子空间聚类
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

基于二阶近邻的核子空间聚类

引用
高维数据集的处理是计算机视觉领域的核心,子空间聚类是实现高维数据聚类使用最广泛的方法之一.传统的子空间聚类假定数据来自不同的线性子空间,且不同子空间的区域不重叠.然而,现实中的数据往往不满足这两个约束条件,使得子空间聚类的效果受到影响.为了解决这两个问题,引入核化子空间来解决子空间数据的非线性问题,引入子空间系数矩阵的二阶近邻来处理重叠的子空间问题.随后,设计了基于二阶近邻的核化子空间三步聚类算法,首先求取核化子空间数据的自相似系数,然后消除子空间的重叠区域,最后对系数矩阵进行谱聚类.将所设计的子空间聚类算法首先在人工数据集上进行了测试,随后在人脸、场景字符和生物医学3类数据集中共12个真实数据集上进行了实验.实验结果表明,所提算法相比最新的几种算法具有一定的优势.

交替方向乘子法、图像识别、核方法、二阶近邻、子空间聚类

48

TP18(自动化基础理论)

国家自然科学基金;国家自然科学基金;国家自然科学基金;国家自然科学基金

2021-06-28(万方平台首次上网日期,不代表论文的发表时间)

共10页

86-95

相关文献
评论
暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

48

2021,48(6)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn