基于粒子群优化的SVM多分类的电动车价格预测研究
万方数据知识服务平台
应用市场
我的应用
会员HOT
万方期刊
×

点击收藏,不怕下次找不到~

@万方数据
会员HOT

期刊专题

10.11896/jsjkx.191200132

基于粒子群优化的SVM多分类的电动车价格预测研究

引用
随着新能源汽车的推广,电动汽车逐渐进入千家万户,而影响电动汽车价格的因素较多.文中对影响电动汽车价格的20个属性进行主成分分析研究,先用Pearson相关系数法和PCA算法对数据进行预处理,获得比较重要的样本属性,然后对研究后的新数据进行多分类有监督学习.在支持向量机模型的基础上,用粒子群算法对支持向量机(Support Vector Machine,SVM)模型的参数进行优化选择,实现了对电动汽车的多分类研究,实验表明所建立的模型对电动汽车的多分类效果明显.

电动汽车、多分类问题、支持向量机、粒子群算法

47

TP305(计算技术、计算机技术)

宁夏先进智能感知控制技术创新团队NSFC61362033,NXJG2017003,NXYLXK2017B09

2020-12-03(万方平台首次上网日期,不代表论文的发表时间)

共4页

421-424

相关文献
评论
暂无封面信息
查看本期封面目录

计算机科学

1002-137X

50-1075/TP

47

2020,47(z2)

相关作者
相关机构

专业内容知识聚合服务平台

国家重点研发计划“现代服务业共性关键技术研发及应用示范”重点专项“4.8专业内容知识聚合服务技术研发与创新服务示范”

国家重点研发计划资助 课题编号:2019YFB1406304
National Key R&D Program of China Grant No. 2019YFB1406304

©天津万方数据有限公司 津ICP备20003920号-1

信息网络传播视听节目许可证 许可证号:0108284

网络出版服务许可证:(总)网出证(京)字096号

违法和不良信息举报电话:4000115888    举报邮箱:problem@wanfangdata.com.cn

举报专区:https://www.12377.cn/

客服邮箱:op@wanfangdata.com.cn